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ABSTRACT 
  

Earthquake rupture occurrence modeling is the basis of seismic risk and Performance-based Earthquake 

Engineering (PBEE). This paper summarizes a probabilistic formulation for modeling time and space interactions 

of rupture occurrence of earthquake mainshocks in a tectonic region. The formulation represents the elastic-

rebound behavior in the tectonic plates and models the stress interaction of neighboring areas of the faults through 

spatial correlation. The paper also describes two methods for the estimation of the model parameters. The first 

method is a simple approach that estimates the parameters in pairs and then calibrates the spatial correlation 

parameter. The second one uses a Bayesian updating to estimate all parameters simultaneously. Both approaches 

are applied to model the rupture occurrence of large interface earthquakes on the subduction zone along the Coast 

of Lima, Peru. The Bayesian updating is demonstrated to be a more reliable estimation technique of the two 

approaches as it predicts a hazard rate that is closer to the data. The simple approach overpredicts the hazard rate 

by more than 25% for areas where data are sparse. 

 

Keywords: elastic-rebound theory; earthquake rupture; time-dependent hazard. 

 

 

1. INTRODUCTION 

 

A salient component earthquake risk and PBEE analyses is the probabilistic modeling of earthquake 

occurrences. In this paper, a probabilistic formulation for modeling time and space rupture interactions 

for large earthquake mainshocks is summarized. This formulation has an underlying physical 

interpretation and is an alternative to existing models that are data-driven but lack such an interpretation 

(e.g., Helmstetter and Werner, 2014) and others that lack model consistency (i.e., mismatch between the 

assumed and simulated distribution of rupture interarrival times in the fault) (e.g, Field et al., 2015). The 

model discretizes a tectonic fault into small sections and uses multiple Brownian Passage Time (BPT) 

distributions to model rupture occurrence at each of the sections. The BPT distributions represent a 

Brownian Relaxation Oscillator (BRO) acting at each section (Matthews et al., 2002). The BROs can 

be interpreted as representing a stress accumulation in each section comprised of two additive 

components: one stress component increasing at a constant rate and one random component behaving 

as a Brownian motion. Whenever there is a rupture, the stress resets to initial conditions and starts the 

cycle again. The BRO aims to represent the elastic-rebound behavior, the canonical theory of 

macroscopic earthquake tectonic behavior (Reid, 1911). Moreover, the model introduces a spatial 

correlation formulation that represents the stress interactions among neighboring zones in the tectonic 

region. A 1-D version of the model was originally proposed by Ceferino et al. (2017), and the 2-D 

version of the model and an in-depth study of its properties was presented in Ceferino et al. (2018a). 
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Additionally, this paper describes two approaches for estimation of the model parameters. The first one 

is a simple method, called hereafter ‘simple approach’, where the parameters of the BPT distributions 

are estimated in each section separately. The correlation parameter is then calibrated to match key 

seismic properties of the tectonic region. The second one is a Bayesian updating that estimates all 

parameters of the model simultaneously. This approach uses a Metropolis-Hastings (MH) Monte Carlo 

Markov Chain (MCMC) to explore the parameter space and sample from the joint posterior distribution 

of the parameters. The Bayesian updating performs a joint estimation of all the model parameters, 

therefore, it can be more suitable than the simple approach for parameter estimation for scarce data (e.g., 

in earthquake catalogs of large ruptures). An application to model large interface earthquake ruptures in 

the subduction zone along the Coast of Lima, Peru, is also presented to compare both approaches. The 

comparison reveals the differences in the estimates of the parameters using both approaches and also 

reveals how these differences propagate to the seismic hazard in the region.  

 

The paper is organized as follows. First, a brief overview of the model is presented. Second, the two 

approaches for parameter estimation are described. Third, the application and the comparison of both 

approaches are detailed. Finally, key conclusions and further steps are provided. 

 

2. MODEL SUMMARY 

 

In this model, the tectonic fault is discretized into 𝑁 sections. For example, Figure 1 shows the 

discretization of a tectonic fault idealized as a line. This line can represent an idealized long strike-slip 

fault such as the San Andreas Fault or a subduction zone idealized along its strike direction. The vector 

𝑋𝑡 = {𝑋𝑡(1), . . . , 𝑋𝑡(𝑁)} is defined as the rupture vector at year 𝑡. Each element 𝑋𝑡(𝑗) corresponds to 

each section of the discretized fault. If there is a rupture at year 𝑡, 𝑋𝑡(𝑗) equals 1 and 0 otherwise. Figure 

1 shows an earthquake rupture in red at year 𝑡, then all 𝑋𝑡(𝑗) corresponding to the sections in red will 

equal 1 and the others will equal 0 at year 𝑡. Additionally, the model assumes that the rupture occurrence 

depends on the vector 𝑇𝑡 = {𝑇𝑡(1), . . . , 𝑇𝑡(𝑁)}, that contains the time since the previous rupture at each 

section of the fault. Each year, 𝑇𝑡(𝑗) is either increased by one if there is no rupture (i.e., 𝑋𝑡(𝑗) = 0) or 

reset if there is one (i.e., 𝑋𝑡(𝑗) = 1). Equation (1) shows the relationship between 𝑇𝑡(𝑗) and 𝑋𝑡(𝑗).  

 

𝑇𝑡+1(𝑗) = 𝑇𝑡(𝑗){1 − 𝑋𝑡(𝑗)} + 1 (1) 

 
Figure 1. Model discretization of a 1-D representation of a tectonic fault. Extracted from Ceferino et al. (2017). 

 

The formulation uses a correlated Multivariate Bernoulli distribution to model the earthquake rupture 

occurrence at year 𝑡 as represented in Equation (2). The model is time-dependent since the rupture is 

dependent on the vector 𝑇𝑡, which contains the years since the last rupture in each section. The vector 

𝑝𝑡 =  {𝑇𝑡(1), . . . , 𝑇𝑡(𝑁)} contains the marginal probabilities of rupture occurrence at each section at year 

𝑡 and is function of 𝑇𝑡 as described below. Additionally, the ruptures of sections interact over the space 

since the model includes spatial correlation, which makes large rupture more likely. The spatial 

correlation in the model will be further explained below. 
 

𝑋𝑡|𝑇𝑡~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑡) (2) 

 

The model assumes a Brownian Relaxation Oscillator (BRO) occurring at each section. Intuitively, the 

BRO represents a stress accumulation in the tectonic plates comprised of 2 additive components: one 

stress that increases over time with a constant rate, and one random stress resulting from a Brownian 

motion. As soon as the BRO reaches certain stress threshold (i.e., failure state), the BRO resets to initial 

stress conditions. Alternative interpretations of the BRO can be found in Matthews et al. (2002). The 
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rupture interarrival time (time between failures) is distributed as a Brownian Passage Time (BPT) 

distribution. In this model, each fault section has a corresponding BPT distribution, which is defined by 

two parameters: the mean interarrival time 𝜇𝑗 and the coefficient of variation (CoV) 𝛼𝑗. Earthquake 

catalogs only contain earthquake rupture interarrival times rather than the progressive stress 

accumulation through earthquake cycles. Therefore, only the parameters of the BPT (𝜇𝑗 and 𝛼𝑗) can be 

estimated from such catalogs. Matthews et al. (2002) developed relationships among the parameters of 

the BRO (e.g., initial stress conditions, the constant-rate component, the Brownian motion component 

and the stress threshold) and the parameters of the BPT that can be used to infer possible associated 

BRO behaviors in a fault. 

  

Using the Bayes rule, 𝑝𝑡(𝑗) can be found as a function of 𝜇𝑗, 𝛼𝑗, and 𝑇𝑡(𝑗) as shown in Equation (3a), 

3b and 3c (see Ceferino et al. (2018)), where Φ[. ] is the standard normal cumulative distribution 

function. 
 

𝑝𝑡(𝑗) =
(Φ[𝑢1(𝑇𝑡(𝑗))] − Φ[𝑢1(𝑇𝑡(𝑗) − 1)]) + 𝑒

−2
𝛼𝑗 (Φ[−𝑢2(𝑇𝑡(𝑗))] − Φ[−𝑢2(𝑇𝑡(𝑗) − 1)])

1 − (Φ[𝑢1(𝑇𝑡(𝑗) − 1)] + 𝑒
−2
𝛼𝑗 Φ[−𝑢2(𝑇𝑡(𝑗) − 1)])

 (3a) 

𝑢1(𝑇) = 𝛼𝑗
−1 [𝑇1/2𝜇𝑗

−1/2
− 𝑇−1/2𝜇𝑗

1/2
] (3b) 

𝑢2(𝑇) = 𝛼𝑗
−1 [𝑇1/2𝜇𝑗

−1/2
+ 𝑇−1/2𝜇𝑗

1/2
] (3c) 

 

The model also includes a spatial correlation function through a spherical correlogram as shown in 

Equations (4). Other types of correlogram were also tested in Ceferino et al. (2018a). The correlogram 

outputs the correlation between rupture occurrence at two sections 𝑖 and 𝑗 during a given year, and it is 

function of the distance 𝑑𝑖𝑠𝑡(𝑖, 𝑗) between these sections and the parameter 𝛾. The correlation of rupture 

occurrence decays with distance, and 𝛾 defines the decaying rate. Intuitively, the correlogram introduces 

an implicit seismic interaction in the BROs (i.e., stress paths) in adjacent sections.  
 

𝜌𝑖,𝑗 = exp (− (
𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝛾
)

2

)   
(4) 

 

For example, a section with a significant probability of rupture during year 𝑡 (i.e., interpreted as large 

accumulated stress) can trigger a rupture in adjacent faults through the spatial correlation. This behavior 

resembles suggested theories for rupture propagation from the earthquake nucleation point to all the 

extent of the rupture area (e.g., Ellsworth and Beroza, 1995). In this model, it is assumed that the rupture 

of multiple adjacent sections during one year 𝑡 are generated in one single large earthquake  event, 

whereas rupture of non-adjacent sections are generated by corresponding multiple earthquake events 

during the year. 

 

Finally, it is noteworthy that the Probability Distribution Function (PDF) of the correlated Multivariate 

Bernoulli distribution presented in Equation (2) lacks closed-form solution as a function of the vector 

𝑝𝑡 and the spatial correlation 𝜌𝑖,𝑗. PDF evaluation is key for Bayesian parameter estimation as it will be 

shown below. In order to overcome this issue, an approximation to Equation (2) is used through the 

“Copulas” method. The method has been shown to be accurate in different applications (e.g., Jin et al., 

2015). Equation (5) shows this approximation. First, a vector 𝑍𝑡 with 𝑁 elements is defined. 𝑍𝑡 is 

distributed as a multivariate normal distribution with a mean equal to a 0-valued vector and a covariance 

matrix equal to the covariance of 𝑋𝑡|𝑇𝑡 (i.e., whose elements come from the correlogram function 𝜌𝑖,𝑗). 

Φ[. ] is the cumulative normal distribution and 𝟏{. } is the indicator function. 
 

𝑋𝑡(𝑗) = 𝟏{Φ[𝑍𝑡(𝑗)] < 𝑝𝑡(𝑗)} (5) 
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3. PARAMETER ESTIMATION  

 

In this section, two parameter estimation techniques are described: a first procedure, denominated 

“simple approach”, that estimates 𝜇𝑗 and 𝛼𝑗 at each section separately and then calibrates 𝛾 to match 

tectonic properties of the fault, and a second procedure based on Bayesian updating that estimates 𝜇𝑗 

and 𝛼𝑗 at all sections and 𝛾 simultaneously. 

 

3.1 Simple approach 

 

This procedure was proposed in Ceferino et al. (2018a). Here, the mean interarrival rupture time 𝜇𝑗 and 

the CoV 𝛼𝑗 at each section are estimated separately using Maximum Likelihood Estimation (MLE). 

Tweedie (1957) developed expressions for estimating the mean �̂�𝑗 and the variance �̂�𝑗
2
 of a BPT 

distribution from 𝑛 interarrival time samples 𝑡𝑗1, 𝑡𝑗2, . . . , 𝑡𝑗𝑛 at section 𝑗. These expressions are shown in 

Equations (6a) and (6b). Using these expressions, the CoV �̂�𝑗 can be found as �̂�𝑗 �̂�𝑗⁄ . 

 

�̂�𝑗 =
1

𝑛
∑ 𝑡𝑗𝑘

𝑛

𝑘=1
 

(6a) 

 

�̂�𝑗
2 =

1

𝑛
∑ (

�̂�𝑗
3

𝑡𝑗𝑘
− �̂�𝑗

2)
𝑛

𝑘=1
 

(6b) 

 

 

After estimating 𝜇𝑗 and 𝛼𝑗 at each section, the correlogram parameter 𝛾 is calibrated to match (1) the 

annual exceedance rates of magnitudes in the tectonic region, and (2) the annual seismic moment release 

in different sections of the fault.  

 

3.2 Bayesian updating 

 

This procedure was proposed by Ceferino et al. (2018b). The details of the mathematical formulation of 

the procedure can be found in that study. Unlike the previous procedure, the Bayesian approach 

estimates the joint posterior of all the parameters of the model at once. Equation (7) shows the formula 

for estimating the posterior of the parameters of the model. 𝛼 and 𝜇 are vectors that contain the CoVs 
{𝛼1, . . . , 𝛼𝑁} and the means {𝜇1, . . . , 𝜇𝑁} of the interarrival time at each section, respectively. The 

posterior equation is a fraction whose numerator is the product of the probability of observing a rupture 

history 𝑃(𝑋|𝛼, 𝜇, 𝛾) and the prior of the parameters 𝑃(𝛼, 𝜇, 𝛾). The denominator of the posterior 

equation is the integral of this product over all the parameter space.  

 

𝑃(𝛼, 𝜇, 𝛾|𝑋) =
𝑃(𝑋|𝛼, 𝜇, 𝛾)𝑃(𝛼, 𝜇, 𝛾)

∫ ∫ ∫ 𝑃(𝑋|𝛼, 𝜇, 𝛾)𝑃(𝛼, 𝜇, 𝛾)𝑑𝛼𝑑𝜇𝑑𝛾
 

(7) 

 

𝑃(𝑋|𝛼, 𝜇, 𝛾) and 𝑃(𝛼, 𝜇, 𝛾) can be computed quickly. The prior 𝑃(𝛼, 𝜇, 𝛾) was taken as a multivariate 

lognormal distribution. All the parameters were considered mutually independent in the prior. Yet, this 

does not imply that the parameters will be independent in the posterior. Equation (8) shows how to 

evaluate 𝑃(𝛼, 𝜇, 𝛾), where each element of the product (𝑃(𝛾), and all 𝑃(𝜇𝑗), 𝑃(𝛼𝑗)) is a lognormal PDF. 

The application in the next section shows the procedure for prior parameter selection. 

 

𝑃(𝛼, 𝜇, 𝛾) = 𝑃(𝛾) ∏ 𝑃(𝜇𝑗)𝑃(𝛼𝑗)
𝑁

𝑗=1
 

(8) 

 

The probability of observing the data 𝑃(𝑋|𝛼, 𝜇, 𝛾) can be assessed as shown in Equations (9a) and (9b). 

These expressions were derived in Ceferino et al. (2018b). Equation (9a) shows that 𝑃(𝑋|𝛼, 𝜇, 𝛾) can be 

assessed as a product of rupture occurrence during each of the 𝐻 years of the catalog. Equation (9a) 

shows how to evaluate the probability of rupture occurrence 𝑃(𝑋𝑡|𝑇𝑡) during each year 𝑡. This is 

estimated as the probability of being in the intersection of the regions defined by 𝐴𝑗, which is either 
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𝑍𝑡(𝑗) ≤ Φ−1[𝑝𝑡(𝑗)] if there is a rupture at year 𝑡 in section 𝑗, or 𝑍𝑡(𝑗) > Φ−1[𝑝𝑡(𝑗)] otherwise. 

 

𝑃(𝑋|𝛼, 𝜇, 𝛾) = ∏ 𝑃(𝑋𝑡|𝑇𝑡)
𝐻

𝑡=1
 

(9a) 

 

𝑃(𝑋𝑡|𝑇𝑡) = 𝑃(∩𝑗=1
𝑁 𝐴𝑗), where {

𝐴𝑗 = {𝑍𝑡(𝑗) ≤ Φ−1[𝑝𝑡(𝑗)]} 𝑖𝑓 𝑋𝑡(𝑗) = 1,

𝑜𝑟  𝐴𝑗 = {𝑍𝑡(𝑗) > Φ−1[𝑝𝑡(𝑗)]} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

(9b) 

 

 

 
Figure 2. Algorithm for Bayesian parameter estimation. 

 

As mentioned earlier, 𝑃(𝑋|𝛼, 𝜇, 𝛾) and 𝑃(𝛼, 𝜇, 𝛾), whose product is the numerator of the posterior in 

Equation (7), can be quickly evaluated. However, the integral in the denominator of the posterior cannot 

be evaluated since the parameter space has high dimensionality and the probabilistic models are 

complex. Because direct integration is computationally unfeasible, a Markov Chain Monte Carlo 

(MCMC) was used to sample from the posterior. MCMC allows to sample from a PDF that can be only 

partially evaluated. Note that the denominator of the posterior is constant and is not a function of the 

parameters 𝛼, 𝜇, 𝛾 since the integral is done through all the parameter space. This characteristic is key 

in order for the MCMC to work. 
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A Metropolis-Hasting (MH) algorithm is used to solve for the MCMC. In short, the parameter space is 

explored through a random walk of 𝑀 steps. The random walk takes steps that are normally distributed, 

and the size of the step is empirically calibrated to have a good sample “mixing” (i.e., be large enough 

to explore all the parameter space, but not that large to get “lost” in low-probability regions). At each 

step, the relative probability gain of the new step is compared to the previous one. The new step is 

accepted with probability equal to the relative probability gain, or rejected otherwise. After certain 

number of steps, the MCMC will reach equilibrium and start sampling from the posterior distribution. 

The initial steps of the MCMC are usually discarded since they are considered to be the burning period 

of the method. Figure 2 shows the workflow of this algorithm, and the next section details its use with 

an application. 

 

4. EFFECT ON SEISMIC HAZARD 

 

Both procedures for parameter estimation were applied here. A description of the discrepancies of these 

parameter estimates and their implication for earthquake hazard computation are also presented. 

 

4.1 Earthquake data 

 

The data from a 450-year earthquake catalog of large earthquakes in the subduction zone along the Coast 

of Lima, Peru, were used. Only interface events larger than Mw 7.5 occurring between the Nazca Ridge 

and the Mendaña Fracture were included in the catalog.  

Figure 3a shows this tectonic region in a black polygon. It also shows in red four previous earthquake 

rupture areas occurring in this region. The subduction zone was idealized as a line along the strike 

direction. A section length of 77.5 km was used, which roughly corresponds to a Mw of 7.5 (Wells & 

Coppersmith, 1994). Therefore, the rupture of one section would be equivalent to the minimum Mw in 

the catalog. Then, the fault was further discretized into 8 sections (i.e., the total length of the fault is 620 

km).  

Figure 3b shows the 450-year earthquake catalog. The red lines represent earthquakes that rupture 

different fault sections (shown in the Y-axis) occurring at different years (X-axis). The ruptures were 

idealized to match the sections. Only ruptures larger than half the section along the strike were 

considered. 

 

  
a) Tectonic region of analysis b) Historic catalog of earthquake ruptures 

 

Figure 3. Earthquake data. 

 

4.2. Simple approach 

 

The parameters 𝜇𝑗 and 𝛼𝑗 were estimated separately for each of the eight sections of the tectonic region 
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using Equations (6a) and 6b. The correlation parameter 𝛾 was calibrated such that the probabilistic 

model matches both the annual rate of magnitude exceedance in the whole tectonic region and the annual 

seismic moment release at each of the sections. Ceferino et al. (2018a) shows the procedure and details 

the result of performing such a calibration on a 450-year earthquake catalog. Table 1 displays the 

estimates of 𝜇, 𝛼, and 𝛾 resulting from this approach in columns 2, 3, and 4, respectively. The 450-year 

catalog is scarce data since earthquake cycles take several centuries, and as a result, the parameters were 

estimated with just a few data points. For example, there is only one rupture interarrival of 320 years in 

Section 1 (in the South) since only two events occurred there in the catalog. Then, the parameter 𝛼1 

could not be estimated. Lack of data also caused few unreliable estimates of the mean interarrival time. 

For example, the mean 𝜇8 was calculated to be 34 years from two data points: 47 and 21. However, 

these two data points came from three ruptures occurring during the 450 years in Section 8, averaging 

one event each 150 years. This large discrepancy in interarrival time estimations (34 vs 150) is due to 

(1) the scarcity of data, and (2) that this procedure does not include the information that the next 

interarrival time will be longer than 271 years (because the last rupture was in 1746).  

 

Most 𝛼 values were in the range between 0.4 and 1.0. Only 𝛼2 and 𝛼6 were larger than 1.0, whereas 𝛼1 

was not calculated due to the insufficient data. Previous studies have shown that 𝛼 (the CoV or 

aperiodicity of the rupture interarrival times) can take a wide set of values (Sykes and Menke, 2006). 

Though the 𝛼 values estimated with this approach might seem high relative to existing empirical studies, 

such values fall within the range found in other tectonic regions. 

 

4.3. Bayesian updating 

 

The Bayesian updating was applied to 450-year catalog in order to estimate the posterior distribution of 

the parameters. The lognormal prior was set up as follows: 

 

• The median of 𝜇𝑗 was taken as 175 years for all sections. This represents the average number 

of ruptured sections in the 450 years in the tectonic region. The logarithmic standard deviation 

of 𝜇𝑗 was taken as 0.3. 

• The median of 𝛼𝑗 was taken as 0.7. This value has been extensively used in other time-dependent 

hazard assessments with BPT distributions (e.g., Field et al., 2015). The logarithmic standard 

deviation of 𝛼𝑗 was taken as 0.3. 

• The median of 𝛾 was taken as 375 km, as suggested by the calibration described in the previous 

parameter estimation approach. The logarithmic standard deviation of 𝛾 was taken as 0.3. 

 
Table 1. Estimated parameters using both the simple approach and the Bayesian updating. 

 

 

Sections 

Simple Method Bayesian Updating (MAP) 

      

 -- -- 375 148 0.93 356 

 172 1.73 140 0.77 

 194 0.55 183 0.65 

 97 0.7 132 0.8 

 114 0.98 154 0.82 

 110 1.18 114 0.69 

 144 0.62 125 0.98 

 34 0.41 156 0.41 

 

 

The MCMC followed the workflow outlined in Figure 2. 10,000 realizations of the posterior were 
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sampled with the random walk. Notice that the random walk explores a 17-dimensional parameters 

space (eight 𝜇𝑗, 𝛼𝑗 pairs and 𝛾). The steps of the random walk were tested under different sizes. Finally, 

random step sizes with standard deviation of 12.5 for all 𝜇𝑗, 0.1 for all 𝛼𝑗, and 17.5 for 𝛾 generated an 

acceptance rate of 30%. The acceptance rate measures the relative number of times that each step is 

accepted as a new state according to the relative likelihood gains. This level of acceptance rate is 

indicative of good sample “mixing” (i.e., effective exploration of the high-probability region of the 

parameter space) (see Chib and Greenberg (1995)). Figure 4a shows the log-likelihood gains (Y-axis) 

of each step in the MCMC of the first 2,000 samples (X-axis). The log-likelihood gains are measured as 

the logarithm of a function proportional to the posterior distribution (see Equation (7)). From the plot, 

the MCMC starts in points with low probability and needs nearly 300 steps of burning period to reach a 

stable distribution. Figure 4b shows a 2-D slice of the 17-D random walk. 𝜇4 and 𝛾 are shown in the X 

and Y axis, respectively. The red dot indicates the starting point of the random walk, the black indicates 

the position of the walk at step 300 (immediately after the burning period), and the green indicates the 

position at step 2,000. This plot shows that the random walk goes through a low-probability region at 

the beginning (in the path between the red and the black dots). After the burning period, the walk stays 

in the high probability region. Therefore, the initial 300 samples were discarded since the walk reaches 

the stability after the 300 first steps. 

  
a) Log-likelihood gains b) 2-D slice of the random walk 

 
Figure 4. Random walk in MCMC. 

 

Figure 5a and 5b show the prior and posterior of the parameters 𝜇4 and 𝛾, respectively. The blue curves 

are the PDFs of the prior of the parameters, the red bars correspond to the histogram of the posterior 

estimated using the samples from the MCMC, and the black curves are the corresponding PDF posterior 

estimations computed using a Gaussian kernel. It can be seen that the earthquake catalog effectively 

updates the distribution of the parameter and reduces the initial epistemic uncertainty from the prior.  

 

  
a) 𝜇4 (in years) a) 𝛾 (in km) 

 
Figure 5. Bayesian updating of the parameters of the model. Prior distribution in blue and posterior in black. 

 

Table 1 shows the maximum a posteriori (MAP) of 𝜇, 𝛼, and 𝛾 in columns 5, 6, and 7, respectively. The 
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MAP estimate is the one that equals the mode of the distribution, and it was taken as the step in the 

MCMC with the highest associated likelihood in the posterior distribution. The comparison of the 

Bayesian updating and the simple approach shows that both approaches give similar results on most of 

the parameters. Most of them differ by less than 25%. The Bayesian updating uses the whole catalog 

dataset to update all the parameters of the model, whereas the simple approach updates the parameters 

using only the ruptures occurring at the individual sections. Therefore, the Bayesian updating gave more 

reliable results to the sections with low number of data points (i.e. ruptures). For example, the Bayesian 

updating gave an estimate to the parameters of Section 1, which could not be obtained using the simple 

approach because it only has one data point. Similarly, the Bayesian approach estimated the mean 

interarrival time in Section 8 to be 156 years. As described previously, the simple approach estimated 

the mean in Section 8 to be 34 years due to three successive events happening in a short interval of time. 

However, on average there was 1 rupture each 150 years (three ruptures during the 450 years in Section 

8), which is closer to the Bayesian estimate and largely mismatches the estimate from the simple 

approach. As mentioned previously, this happens due to the scarcity of data and that it is known that 

next interarrival time will be longer than 271 years (i.e. the last rupture was in 1746), but this information 

is not included in the simple approach since the next interarrival time is still unknown. The Bayesian 

approach overcomes this issue and gives results based on all the catalog for all parameters of the model. 

 

Additionally, the Bayesian updating resulted in 𝛼 values within a range between 0.4 and 1.0. The large 

𝛼 values found with the simple approach were reduced. Therefore, the resulting 𝛼 values were more 

consistent with existing estimates from other tectonic regions (Sykes and Menke, 2006). 

 

4.3. Hazard Comparison 

 

Hazard calculations based on the parameters estimated from both approaches were compared. Though 

most of the parameter estimates were similar, the impact on the seismic hazard is explored here. The 

probability of exceeding a Peak Ground Acceleration (PGA) larger than 0.4g during the next 30 years 

due to earthquakes larger than Mw 7.5 was computed in Lima. The probability of rupture occurrence 

was computed using Monte Carlo on the model with parameters estimated from both approaches. Figure 

6a and Figure 6b show the hazard results of the simple approach and the Bayesian updating, respectively.  

 

   
a) Simple approach b)  Bayesian updating c) Ratio of both approaches 

 
Figure 6. Hazard results (P[PGA>0.4g] during the next 30 years) using the simple approach and the Bayesian 

updating, and the ratio between both hazard estimations. 

 

Both hazard maps display smaller hazard in the South than in the North since the recent earthquake in 

2007 ruptured the two southernmost sections in the tectonic region (in black polygon), resetting the 

time-dependent probability of rupture of the model. Figure 6c shows the ratio between the hazard 

calculated with the simple approach over the one with the Bayesian updating. The hazard differs in ± 

25% in most of the region. The main difference is in the northern region, where the simple approach 



10 

 

 

overestimates the hazard by more than 25% when compared to the Bayesian updating. This occurs due 

to the very short mean interarrival time (mean of 34 years) from the simple approach. This mean 

generates more frequent ruptures in the North region than the Bayesian updating (mean of 156 years). 

Therefore, it can be seen that the simple approach can propagate unreliable hazard results in regions 

where there are only a few ruptures. 

 

5. CONCLUSIONS 

 

A summary of a probabilistic formulation for modeling of time and space interactions of earthquake 

mainshock occurrence was presented in this paper. The model discretizes a tectonic fault into small 

sections and uses multiple Brownian Passage Time (BPT) distributions to model rupture interarrival 

time. It also uses a spatial correlation function to model space interdependencies of earthquake rupture 

occurrence representing stress coupling and rupture propagation between neighboring sections of the 

fault. Additionally, two approaches for estimating the parameters of the rupture model were described 

in the paper. The first one is a simple approach that estimates the parameters of the BPT in each section 

separately. Then, it calibrates the correlation function in order to match both the annual exceedance rate 

of magnitudes in the whole tectonic region and the annual seismic moment release in each section. The 

second one is a Bayesian updating that estimates the posterior of the joint distribution of the model 

parameters through a Markov Chain Monte Carlo (MCMC). 

 

This paper applies both parameter estimation approaches to a 450-year earthquake catalog in the 

subduction zone along the Coast of Lima. The earthquake catalog contained the location and the sizes 

of large interface ruptures with Mw larger than 7.5. The Bayesian updating showed to be effective at 

reducing the epistemic uncertainty of the parameters of the model. The comparison of the two 

approaches showed that both gave similar estimates (with a difference of less than ± 25% in most of the 

parameter estimates). However, the simple approach can give unreliable results in sections where only 

a few ruptures occurred. For example, in one of the fault sections, the simple approach estimated the 

mean interarrival time to be 34 years since three events occurred there in a very short period of time. 

Yet, there was one event every 150 years on average in the catalog. The Bayesian updating provided 

more reliable results (mean of 156 years in the section) since, unlike the simple approach, it included 

the complete information of the catalog to estimate all parameters simultaneously. Additionally, the 

Bayesian updating allowed to perform estimation for all the model parameters, whereas the simple 

approach was not able to estimate the parameters for fault sections with two ruptures or fewer. The effect 

of both parameter estimation approaches on the seismic hazard was also assessed. The hazard was 

estimated as the probability of exceeding a Peak Ground Acceleration (PGA) of 0.4g during the next 30 

years. The hazard results were similar in most of the region of analysis (with a difference of less than ± 

25%). However, where the rupture interarrival time was largely underestimated as described earlier, the 

hazard was largely overestimated by more than 25%.  

 

In summary, the simple approach is easier and quicker since there are closed-form expressions for 

estimating the BPT parameters, and the correlation calibration procedure is intuitive to implement. The 

Bayesian updating requires a slightly more complex implementation since all the parameters are updated 

simultaneously. Additionally, the Bayesian updating can require large numbers of samples (i.e., steps) 

from the MCMC and also requires calibration of the random walk for good ‘sampling mixing’. Based 

on the above observations, modeling tests, and the application of the model, it is found that simple 

approach can give an initial, quicker estimation of the parameters of the model, however, the Bayesian 

updating proves to be more reliable in estimating the parameters and assessing the time-dependent 

seismic hazard. 
 

Future work will include (1) incorporating data from physics-based earthquake rupture simulation to 

further decrease the epistemic uncertainty of the model parameters in the Bayesian updating, and (2) 

propagating the epistemic uncertainty of the model parameters to the hazard results. 
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