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ABSTRACT:
The growing frequency of extreme weather events and cyberattacks triggers the rise of compound
cyber-physical threats where a cyberattacker targets critically stressed electricity generators and
transmission lines during an extreme weather event. In this paper, we quantify the conditional
probability of a cyberattack against electric power network components in the event of extreme flooding
in the Manhattan Borough of New York City (NYC). Based on the first stage of a recently-proposed
framework, a bilevel optimization problem represents the adversarial rationale of a cyberattacker. Our
results reveal the risk profiles of electricity generators, transmission lines, and customers in Manhattan,
by exploring the parameter space of the bilevel optimization problem through Monte Carlo simulations.
We found that when imports from neighboring states are constrained under extreme flooding, the
cyberattacker targets natural gas capacity in the NYC Metropolitan Area first, and then transmission
lines connecting Manhattan to the NYC Metropolitan Area. The disruption can lead to power outages
for more than 50% of Midtown Manhattan customers with high probability. Our analysis informs the
design of mitigation and response strategies against compound extreme floodings and cyberattacks.

1. INTRODUCTION

Extreme weather events and cyberattacks in-
crease in frequency and compromise the supply of
electricity for extended time periods. Data breaches
in the U.S. increased by more than 1000% be-
tween 2005 and 2022 (Statista, 2021), while the an-
nual 10-year average frequency of extreme weather
events in the U.S. grew by more than 400% be-
tween 1980-1989 and 2010-2019 (Smith, 2021).
The flooded substation in the East 14th street of
Manhattan, New York City (NYC) during Hurri-

cane Sandy in 2012 left almost 2 million customers
without power (NYC, 2013). The winter storm
and associated floodings in Los Angeles, CA left
145,000 customers without power in January 2023
(Mendoza, 2023).

Contrary to the randomness of extreme weather
events, cyberattacks are deliberate. A cyberattacker
chooses which components to compromise based
on their vulnerability and the goal of the cyberat-
tack. When an infrastructure operates under criti-
cal conditions, a cyberattack can further exacerbate
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the impact (Avraam et al., 2022). Hence, an ex-
treme weather event is an opportunity for the cyber-
attacker to maximize infrastructure damage and ex-
acerbate service disruptions. The imminent threat
has alerted U.S. federal and state agencies. For
example, on September 14, 2018, North Carolina
State officials warned residents against cyberattacks
in the onset and immediate aftermath of Hurricane
Florence (NCDIT, 2018).

Existing risk frameworks omit the compound-
ing effect of a deliberate cyberattack during an ex-
treme weather event. Risk assessment of com-
pound threats is limited to compound natural haz-
ards (Zscheischler et al., 2018). When studied to-
gether, cyberattacks are treated similarly to extreme
weather events for the design of preparedness and
mitigation strategies (Ouyang, 2017), and informa-
tion recovery (Soltan et al., 2018). Contrary to
extreme weather events, cyberattacks are deliber-
ate and can target critically-stressed infrastructure
components to exacerbate the impact of the event.
However, frameworks that identify the adversarial
rationale of a cyberattacker focus on identifying
vulnerable infrastructure components and sectors of
the economy (Avraam et al., 2022) and do not pro-
vide a cyber-risk profile of individual components.

The increasing frequency of high-intensity hurri-
canes exposes large coastal cities, e.g., NYC and
Los Angeles, to severe floodings (Sanders et al.,
2023). Over 50% of electricity generation ca-
pacity in the NYC Metropolitan Area was within
the 1-percent annual chance floodplain in 2019
(NYCEM, 2019). In this paper, we focus on Man-
hattan, as the most densely-populated region of the
U.S. (USCB, 2021). Given our limited knowledge
on cyberattacker capabilities, in this paper we in-
vestigate:

• What is the conditional probability of a cyber-
attack in the event of extreme flooding in Man-
hattan?

• What is the risk profile of customers, electric-
ity generators, and transmission lines of the
Manhattan electric power network?

The rest of the paper is organized as follows.
Section 2 describes the probabilistic framework in

this paper, which explores the parameter space of
the cyberattacker bilevel optimization problem in
Avraam et al. (2022). In Section 3, we detail the
assumptions of our scenario design. We discuss re-
sults and limitations in Section 4, and conclude in
Section 5.

2. METHODS
For completeness, we first summarize the opti-

mization problems of the system operator and cy-
berattacker, as in Avraam et al. (2022). Then, we
describe the assumptions of the probabilistic analy-
sis for the electric power components of Manhattan.
Figure 1 illustrates the methodology in this paper.
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Figure 1: Probabilistic framework for the generation of
cyber risk profiles of electricity customers and compo-
nents under extreme flooding and uniform distribution
of the vulnerability of electric power components to cy-
berattacks.

2.1. System Operator: Optimal Power Flow
Model

Following Avraam et al. (2022), we model the
electricity infrastructure as a network where N =
{1, . . . ,N}, E = {1, . . .E} and G = {1, . . .G} are
the sets of nodes, edges, and electricity genera-
tion technologies in the network, with N,E,G ∈ N.

2



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Agents in the network make decisions in hourly
intervals h ∈ H for a representative day of the
Fall hurricane season. The system operator in our
framework minimizes the operating cost based on
the cost of electricity generation (cg

h ∈ RN×G) and
the cost of unserved load (cu

h ∈ RN):

C (g,u) = ∑
h∈H

(
cg

h

)T gh + ∑
h∈H

(cu
h)

T uh, (1)

to decide the dispatching of electricity generation
technologies (gh ∈ RN×G), unserved load (uh ∈
RN), power flow across edges ( fh ∈ RE) and nodal
voltage angle (θ ∈ RN). In addition, the system
operator needs to satisfy electricity generation and
flow constraints. The optimization problem of the
system operator in Eq. (2) is an Optimal Power
Flow (OPF) model (Eldridge et al., 2018).

min
gh ∈ RG, fh ∈ RE ,
uh,θh ∈ RN

C (g,u)

s.t. (2a)

∑i∈G gih +uh
−dh +AT fh = 0 , ∀h ∈ H (2b)

fh +BAθh = 0, h ∈ H (2c)
gh ≤ gh ≤ ḡh, ∀h ∈ H (2d)

f h ≤ fh ≤ f̄h, ∀h ∈ H (2e)

θ h ≤ Aθh ≤ θ̄h, ∀h ∈ H (2f)
0 ≤ uh ≤ dh, ∀h ∈ H (2g)

θ
re f
h = 0, ∀h ∈ H (2h)

In our formulation, Eq. (2b) ensures that demand
for electricity (dh ∈ RN) is met at all nodes of the
network, where A ∈ ME×N (R) is the incidence ma-
trix of the electric power network. Moreover, Eq.
(2c) ensures that nodal voltage angles are consistent
with the flow of electricity between nodes, where
B = diag{b} ∈ ME×E (R) is the matrix of suscep-
tances of all transmission lines. In addition, Eqs.
(2d)-(2g) describe the upper and lower bounds on
generation (ḡh,gh ∈ RN×G), flow across transmis-
sion lines ( f̄h, f h ∈ RE), and nodal voltage angle
differences across edges (θ̄h,θ h ∈RE) respectively.
Finally, Eq. (2h) defines the reference node, i.e., the

node whose voltage angle (θ
re f
h ) serves as a refer-

ence for the level of all other voltage angles.

2.2. Cyberattacker: Bilevel Optimization Prob-
lem

Similarly to Avraam et al. (2022), the cyberat-
tacker can compromise generation capacity (zg

sh ∈
RN×G), flow capacity (z f

sh ∈ RE), and tamper with
nodal voltage angle measurements (zθ

sh ∈ RN). The
vector (zg

sh,z
f
sh,z

θ
sh) ∈ RN×G × RE × RN defines

the cyberattacker strategy and reveals the targeted
components. The cyberattacker strategy implies
that Eqs. (2d)-(2g) of the OPF (2) become:

gh ≤gh ≤ ḡh − zg
h, h ∈ H (3a)

f h − z f
h ≤ fh ≤ f̄h − z f

h , h ∈ H (3b)

θ h − zθ
h ≤Aθh≤ θ̄h − zθ

h , h ∈ H (3c)

The cyberattacker decides the strategy that max-
imizes the total unserved load across nodes of the
electric power network, i.e.,

max
zg

h ∈ RG,z f
h ∈ RE ,

zθ
h ∈ RE ,y ∈ Y

∑
h∈H

1T
Nuh

s.t. (4a)

y ∈ argmin
ŷ

C(ŷ;zg,z f ,zθ )

∣∣∣∣∣
(2b)− (2c),
(3a)− (3c),
(2g)− (2h)


(4b)

0 ≤ zg
h ≤ ḡh, ∀h ∈ H (4c)

0 ≤ z f
h ≤ f̄h, ∀h ∈ H (4d)

0 ≤ zθ
h ≤ θ̄h, ∀h ∈ H (4e)

∑
h∈H

(
c̃g

h

)T zg
h +

(
c̃ f

h

)T
z f

h +
(

c̃θ
h

)T
zθ

h ≤ b̃ (4f)

We denote with 1T
N ∈ RN the vector of all ones.

Eq. (4b) grasps the response of the system oper-
ator y = (g, f ,θ ,u), with feasible space Y , to an
extreme event, a cyberattack, or a compound cyber-
physical threat. Notice that the cyberattacker can
compromise generation capacity, transmission ca-
pacity, and nodal voltage angle limits of the elec-
tricity infrastructure network through constraints
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(2b)-(2c). Eqs. (4c)-(4e) impose that the cyberat-
tacker strategy (zg,z f ,zθ ) can not exceed the phys-
ical limits of the respective electric power compo-
nents. Finally, the cyberattacker allocates resources
with cost c̃g

h ∈RN×G, c̃ f
h ∈RE , and c̃θ

h ∈RN to com-
promise generation capacity, transmission capacity,
and nodal voltage angle limits respectively. Notice
that increasing vulnerability of an electric power
component to a cyberattack decreases the cyber-
attacker cost. Therefore, parameters c̃g, c̃ f , c̃θ can
also be viewed as cyber vulnerability indices. The
resources of the cyberattacker are limited to b̃ ∈ R
in Eq. (4f).

In our formulation, the optimal response of the
system operator in Eq. (4b) constrains the cyber-
attacker optimization problem in Eq. (4). There-
fore, the cyberattacker derives the optimal strategy
by solving a bilevel optimization problem (Castillo
et al., 2019), where the system operator decisions y
comprise the lower-level variables and the cyberat-
tacker strategy (zg,z f ,zθ ) comprise the upper-level
variables.

2.3. Probabilistic Analysis
In this section, we assume limited publicly avail-

able information regarding the cyberattacker capa-
bilities and system-level vulnerabilities of electric
power components. For that, in Eq. (5) the cyber-
attacker cost and budget parameters are uniformly
distributed around their mean values (b̄, c̄ f , c̄θ ), i.e.,

b̃ ∼ U (b̄), c̃ f ∼ U (c̄ f ), c̃θ ∼ U (c̄θ ) (5)

Since Eq. (5) is linear, all cost and budget pa-
rameter changes are relative to c̄g. We calibrated
the mean cyberattacker cost and budget parame-
ters by assuming that under normal operating con-
ditions, the cyberattack goes unnoticed, i.e., com-
promises no more than 0.5% of NYISO load ev-
ery hour. Contrary to the NYISO, which oversees
transmission infrastructure, electricity generators in
the State of New York do not necessarily partic-
ipate in the cybersecurity initiatives of the North
American Electric Corporation (EPRI, 2015). For
that, we assumed that generators are more vulnera-
ble than transmission lines. All generators in our

model exhibit the same vulnerability to cyberat-
tacks c̄g across nodes. Similarly, all transmission
lines exhibit the same vulnerability to cyberattacks
c̄ f and c̄θ across edges and nodes.

For the Monte Carlo analysis, we discretized the
parameter space of b̄ into 15 points, and the param-
eter space of c̄ f , c̄θ into another 15 points. We as-
sumed independence between the parameters and
assigned mass probabilities in each point, accord-
ing to the distributions in Eq. (5). Therefore, our
Monte Carlo analysis comprises 15×15 = 225 ex-
periments.

3. SCENARIO DESIGN

We modeled the following four scenarios for a
24-hour day during the Fall hurricane season in the
NYC Metropolitan area.

Baseline: For the calibration of the OPF, we in-
tegrated the four regions of Manhattan (Midtown,
Lower-East, Lower-West, North) with the zones
of the New York Independent System Operator
(NYISO): WEST, GENE, CNTR, NRTH, MHVL,
CPTL, HDVL, MLWD, DNWD, NYCN, LNGL.
We retrieved the NYISO summer load-duration
curve and impedance of all transmission lines from
Khan et al. (2022). We retrieved the 2018 NYISO
installed capacity from NYISO (2019). Moreover,
we considered 19.8 million NYISO customers, ac-
cording to the earliest known estimate in 2020
(FERC, 2020). We focused on Manhattan as a sub-
region of the NYISO and assumed that electricity
trade with all other system operators is fixed.

Extreme Flooding: Following the extreme flood-
ing scenario in the NYC Stormwater Flood Maps,
we assumed 3.5 inches of rain in an hour, which has
1% occurrence probability, and 4.8 feet of sea level
rise (NYCOD, 2023). During Hurricane Sandy,
four out of six steam generators were inopera-
ble during and immediately after the event (NYC,
2013). For that, we assumed that all power plants
in flooded areas are non-functional. Table 1 lists the
affected electricity generation facilities in the NYC
Metropolitan Area.

Cyberattack: Electricity generation, transmis-
sion, and end-use components communicate and
operate using Supervisory Control And Data Ac-
quisition (SCADA) devices and Programmable
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Table 1: Non-functional power plants under Extreme
Flooding.

Generator Capacity (MW) Fuel Input
59th Street 37 oil
74th Street 17 gas
East River 716 gas
North 1st 47 gas
Hudson Avenue 109 oil
Gowanus 733 oil
Jamaica Bay 64 oil
Peaking

Logic Controllers (PLCs). Therefore, the cyberat-
tacker can compromise generation and transmission
capacity by modifying SCADA and PLC firmware
(Krishnamurthy et al., 2019; Wang and Karri, 2016)
and hardware (Wang et al., 2015, 2016).

Compound Threat: The cyberattacker targets
the NYISO during the extreme flooding scenario.
Publicly available data on cyberattacks and cyber-
attackers’ capabilities against U.S. electricity in-
frastructure is extremely limited. For that, we con-
ducted a Monte Carlo analysis by varying the pa-
rameters defining the cyberattackers’ resources.

4. RESULTS

In this section, we first quantified the compound-
ing impact of a cyberattack during extreme flood-
ing, as compared to a cyberattack under normal op-
erating conditions, for mean cyberattacker capabil-
ities (b̄, c̄ f , c̄θ ). Then, we conducted a probabilis-
tic analysis to derive the conditional risk profiles
of customers and electricity infrastructure compo-
nents in Manhattan.

4.1. Cyberattack Compounding Impact
While the cyberattack under normal operating

conditions does not disrupt the electricity supply
to NYC, the compound threat exacerbated unserved
load by a factor of three. Total unserved load in a
24-hour period grew from 2.59 GWh under the ex-
treme flooding, to 8.15 GWh under the compound
threat. Table 2 summarizes our results for a 24-hour
period.

The cyberattacker strategy during peak electric-
ity demand at 18:00 provides more insight into the

Table 2: Unserved Load (MWh) in Manhattan, 24-hour
period. Unserved load under the compound threat is
more than three times higher than the sum (column 3)
of unserved load under the individual threats.

Extreme Cyberattack Σ Compound
Flooding Threat

2.59 0.0 2.59 8.15

results. During peak demand, the cyberattacker
compromised 6.2 GW of fuel capacity in the NYC
Metropolitan Area and 17% of transmission capac-
ity between Manhattan and the NYC Metropolitan
Area under the compound threat. Extreme flood-
ing incapacitated the East Side gas-fired plant and
leads to a 35% unserved load in Midtown Man-
hattan. The East Side gas-fired plant is the largest
electricity generator in Manhattan, thus the extreme
flooding rendered Manhattan dependent on elec-
tricity imports from the NYC Metropolitan Area.
Therefore, curtailing transmission capacity trans-
lated into unserved load. Given the compromised
generation and transmission capacity, the system
operator decides the system configuration that min-
imizes unserved load in Eq. (4b), which led to shed-
ding 71% of Midtown Manhattan load, affecting
approximately 85,181 customers. Figure 2 shows
unserved load across Manhattan regions, while Fig-
ure 3 shows that the rest of the NYISO zones re-
mained unaffected.

Figure 2: Unserved Load in Manhattan as a percent of
Baseline consumption. Targeted transmission lines are
in red. The cyberattack exacerbates the unserved load
in Midtown Manhattan by a factor of two.
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Figure 3: Unserved Load in the NYISO as a percent
of Baseline consumption under a compound threat.
The NYC Metropolitan Area, including Manhattan,
experienced unserved load of 6.6%, while the rest of
the NYISO zones remained unaffected.

4.2. Cyber Risk Profile of Electricity Components
The probabilistic analysis revealed additional

vulnerable regions and infrastructure components
under a compound cyberattack and extreme flood-
ing. Figure 4 shows that the cyberattacker targets
gas-fired plants in neighboring areas to the flooded
regions. The rest of the NYISO generation remains
relatively unaffected. In fact, gas-fired plants in the
NYC Metropolitan Area were the target of the cy-
berattacker 80% of the time, as shown in Figure 5.

The cyberattacker targeted components in nodes
that are stressed during the extreme flooding, which
leads to greater unserved loads in the targeted re-
gions compared to the rest. Lost electricity gen-
eration capacity rendered Manhattan dependent on
electricity generation from the NYC Metropoli-
tan area. The cyberattacker attempted to curtail
electricity supply to Manhattan from neighboring
regions by attacking electricity generation in the
NYC Metropolitan Area. Gas-fired generators are
important to the NYISO network because they have
the highest capacity usage factor among all electric-
ity generation technologies in our model. For that,
the cyberattacker chose to compromise gas-fired
generators first. Moreover, under extreme flood-
ing, electricity generation in Manhattan could no
longer support the voltage in the Lower and Mid-
town Manhattan nodes, which were stressed to their
limits. For that, the cyberattacker targeted the volt-
age angle limit between Manhattan and the NYC

Figure 4: Compromised gas generation capacity under
the compound event for the NYC Metropolitan Area.
With a probability of 70%, the cyberattacker compro-
mises more than 80% of gas-fired generation in a 24-
hour period. We fit a probability density function using
the kernel density estimation method.

Metropolitan Area to constrain flow to Manhattan.
Figure 6 illustrates that beyond Midtown Man-

hattan, customers in North Manhattan and the NYC
Metropolitan Area were also likely to face load
shedding. We found that there is a 19% probabil-
ity that a compound threat during extreme flooding
affects more than 129,000 electricity customers in
the NYC Metropolitan Area, as shown in Figure 7.

4.3. Limitations
The limitations of our analysis arise from the un-

availability of publicly available data on critical in-
frastructure components and cyberattacker capabil-
ities.

First, our analysis is sensitive to the assump-
tions on transmission line characteristics. Khan
et al. (2022) provide a realistic approximation of the
NYC and NYISO transmission system. However,
additional transmission capacity between Manhat-
tan and the New York City Metropolitan Area
can alleviate the impact of a compound threat on
the respective interconnections and Manhattan cus-
tomers.

Second, our analysis is sensitive to the assump-
tions on the cyberattacker cost parameters, bud-
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Figure 5: Percentage of compromised generation ca-
pacity of the NYISO compared to the Baseline for the
top-3 generators.

get, and associated probability distributions. In
the absence of information regarding cyberattacker
capabilities, the Monte Carlo simulations sample
from uniform distributions to explore the param-
eter space of the cyberattacker optimization prob-
lem. Different distributions, also for regionally di-
verse infrastructure components, can alter the cyber
risk profiles under extreme flooding.

5. CONCLUSION

This work quantifies the risk of cyberattacks
against electricity customers and infrastructure
components of the NYC Metropolitan area during
extreme flooding. We explore the parameter space
of the bilevel optimization problem of a cyberat-
tacker through Monte Carlo simulations.

Our analysis is generalizable to multiple regions,
natural hazards, and infrastructure systems. The
generalization requires identifying the physical vul-
nerability of regional infrastructure components to
earthquakes, hurricanes, and wildfires. Moreover,
the formulation in Eq. (2) is a transportation prob-
lem. Hence, with minor modifications of Eqs. (2c),
(2f), (2h), we can model within the same frame-
work interdependent critical infrastructure systems,
including natural gas, biofuel, and food. Future re-
search is necessary to understand the cyberattacker
capabilities at the system level.

Figure 6: Histogram of the percentage of unserved
energy in a 24-hour period in each NYISO zone and
Manhattan region compared to the Baseline. Unserved
energy in Midtown Manhattan is greater than 80%
in 12% of instances. Most NYISO zones remain unaf-
fected.

Figure 7: Probability distribution of total unserved
energy in the NYC Metropolitan Area in a 24-hour
period under varying cyberattacker cost and resources.
There was a 19% probability that the unserved energy
is higher than 10%, affecting ∼ 129,000 customers.
We fit a probability density function using the kernel
density estimation method.
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